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Abstract. Two models are used in the literature, to study the electric behaviour of cellular membranes
such as in protein aggregates, excitable media or ionic currents for examples. The first one is the Elec-
troneutral Model based on Nernst-Planck and Poisson equations with a specific condition of microscopic
electroneutrality. The second one is the Cable Model valid for long wavelengths based on an analogy be-
tween an electric cable and a cell. Convincing experiments have justified the Cable equation. First, we
show that these two models are in contradiction. More precisely the assumption of electroneutrality is not
considered in the Cable Model. The main difference between the two models is highlighted by the analysis
of the well known voltage instability due to a negative differential conductance. Then, we derive a new
semi-microscopic model (the Biomembrane Electrodiffusive Model, called BEM) valid for phenomena at
any wavelength. The BEM is based on Nernst-Planck and Poisson equations but, doesn’t imply microscopic
electroneutrality. It reveals the capacitive behaviour of the membrane. In the limit of long wavelengths,
one recovers the behaviour described within the Cable framework, as shown precisely in the study of the
negative differential conductance analysis. Finally, we demonstrate the intimate link between the last mod-
els: the Cable Model appears as the limit of the BEM for large wavelengths with some prerequisites which
are discussed. The effects of geometry and asymmetrical media are introduced.

PACS. 87.10.+e General, theoretical, and mathematical biophysics (including logic of biosystems, quan-
tum biology, and revelant aspect of thermodynamics, information theory, cybernetics, and bionics) –
87.22.Bt Membrane and subcellular physics and structure – 66.10.-x Diffusion and ionic conduction in
liquids

1 Introduction

Spatiotemporal pattern formation is ubiquitous in systems
driven away from thermal equilibrium [1]. Fascinating pat-
terns occur in biological systems [1,2], such as for exam-
ple, phyllotaxis [3], banding phenomenon in Characean
algae [4], calcium waves [5], spirals in cardiac tissue
[6–9] and in discoideum aggregation [10], patterns of pro-
tein aggregates (see [11] for experiments and [12–19] for
theoretical work) ... They seem to present the same univer-
sal character as pattern formation in physics. Examples of
ionic currents in Chara corallina and Fucus are provided
in the Section 3 because, one part of this work deals with
a theoretical mechanism on such a phenomenon.

In this article, we focus on the electric behaviour of
cellular membranes. Long ago, the theoretical framework
of the studies on electric pattern formation was usually
based on a phenomenological equation: the Cable equa-
tion [20–22]. It is derived by analogy with the electric
behaviour of an electric cable. It provides the temporal
evolution of membrane potential along a cylindrical cell
(or a flat cell). Its principle is recalled in Section 3.1. This
equation has been experimentally checked by several au-
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thors [23]. Recent experiments are particularly convincing
[24,25]. However, even if this equation provides a powerful
means to understand excitable media and protein aggre-
gation, some problems cannot be solved. A first example
concerns the electric properties of dendritic spines [26].
The Cable equation ignores diffusive flux. As the charac-
teristic length of spines is small compared to usual cellular
size, the diffusion flux of each species can become larger
than the ionic flux due to electric fields. A second ex-
ample is the shape fluctuations of biomembranes coupled
to electric activities [27]. Their determination implies the
knowledge of the normal stress to the membrane and for
instance, the normal electric field gradient. This is not pos-
sible with the Cable equation, because it only deals with
propagation parallel to the membrane. A fourth example
is that the Cable Model is only valid when the charac-
teristic length λ of phenomena is larger than the typical
cellular size R: λ � R. This condition is never fulfilled
in the study of an isolated flat biomembrane. For such an
isolated membrane, with the Cable Model, the theoreti-
cal determinations of voltage fluctuations are restricted to
temporal correlations but, not spatial [28]. Another im-
portant example is the growth physiology of the egg of
Fucus, a brown algae, which develops a stationary dipolar
ionic circulation through the cell after fertilization [29].
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Wavelength and cellular radius (Fucus is a sphere) are of
same order, about 100 µm. Moreover, in this case, the
spherical geometry is difficult to take into account. Let us
emphasize that even with the above restrictions, the Cable
Model is very powerful in many biological interpretations.

However, it is useful to develop a more microscopic
model based on the Nernst-Planck and Poisson equations
(called the electrodiffusive model in the following). All
the difficulty of this approach is the determination of the
boundary conditions physically relevant. The main crite-
rion is to be able to derive the Cable equation and to
recover the Cable results on well known examples.

To my knowledge, the only electrodiffusive model used
in literature, is the Electroneutral Model. It has been no-
tably used to study the membrane protein aggregation
[12,13] and ionic currents occurence [30]. Based on a
comparison between the Debye time and the character-
istic time, the Electroneutral Model assumes that the
microscopic electroneutrality is always strictly reached:
δρi = δρe = 0 where δρi and δρe are respectively the vari-
ations of charge in intracellular and extracellular media.
We recall this model in Section 4.

In the paper, we show that the Electroneutral Model is
in contradiction with the Cable Model. On one hand, this
is revealed in the study the voltage instability induced by
a negative differential conductance (the principle, known
long ago, is recalled in Sect. 3.2 [31]). The analysis with
the Cable formalism is provided in Section 3.2. On the
other hand, in Section 5, we recall the recent results in
the literature using the Electroneutral Model. We point
out the differences between the two models (final state and
characteristic time). We conclude that the Electroneutral
Model is not relevant.

In Section 6.1, we propose a new model (the Biomem-
brane Electrodiffusive Model called BEM) where the step-
ping stone is to consider new boundary conditions which
do not imply microscopic electroneutrality. The evaluation
of lipid bilayer and protein (channels and pumps) perme-
abilities implies small spatial variations of electric field
inside the membrane. Then, we deduce that the mem-
brane electric potential is linked to the electric charges in
the Debye layer. This confirms the capacitive nature of
the membrane potential. We use this model to study the
voltage instability due to a negative differential conduc-
tance in Section 6.2. The analogy between the results of
the BEM and the Cable Model is developed in Section 6.3.
We also emphasize geometrical aspects in Section 6.4 and
the role of asymmetrical media in Section 6.5.

To our mind, the more convincing criterion of validity
of the BEM introduced in this article, is the derivation of
the Cable Model given in Section 7.1. The Nernst-Planck
and Poisson equations are integrated and it is shown that
boundary conditions of the BEM play a crucial role. The
capacitive aspect then emerges naturally. In Section 7.2,
we briefly discuss possible applications of the BEM and
conclude in Section 8.

Fig. 1. Symmetry breaking in Fucus, a brown algae. Thirty
minutes after fertilization, a dipolar ionic circulation crosses
the cell.

Fig. 2. Symmetry breaking in Chara corallina, a green algae.
Above a critical light flux, pH bands develop close to the mem-
brane. The characteristic size is about 1 cm and gradients of
pH are usually close to 3 units. The characteristic time is about
30 minutes. The bath pH is close to 8.

2 Ionic currents

A lot of cells develop stationary ionic circulations called
ionic currents in biology (potassium, calcium, protons...)
[4,32–35]. The characteristic wavelength varies from
10 µm to 1 cm and the time from a few minutes to a few
hours. It depends on the type of the cell. Two cells appear
as prototypes for the understanding of this phenomenon.

A first example is the generation of ionic currents (no-
tably calcium and potassium) in the spherical egg of Fucus
[29], a brown algae. Initially, it has spherical symmetry:
the membrane potential is uniform. Thirty minutes after
fertilization, a dipolar loop of transcellular currents devel-
ops (Fig. 1). It polarizes the cell. Five to ten hours later,
the current saturates at about 1 µA cm−2 and a protu-
berance forms at the accurate site of influx. These events
could be the first steps of morphogenesis in this type of
cells. Dipolar circulation in Fucus breaks the spherical
symmetry.

The second typical example is the banding phe-
nomenon in the internodal cell of Chara corallina, a green
algae [4]. This cell is a cylinder of radius about 0.5 mm
and length about 6 cm. In darkness, the extracellular pH is
homogeneous. Above a critical light influx, the pH close to
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the membrane becomes periodically modulated (Fig. 2).
The usual gradients are about 3 to 4 units of pH over a
length about 1 cm! The characteristic time is 30 min. In
an acid band there is an efflux of protons, while in a basic
band protons enter the cell (probably with another ion).
The intensity of ionic currents varies from 10 µA cm−2 to
80 µA cm−2. Banding phenomenon breaks the longitudi-
nal symmetry.

Several mechanisms have been proposed in order to
explain such symmetry breaking. The first one is due to
membrane protein aggregation, either by a coupling be-
tween protein electric charges and ionic currents produced
by these same proteins (first proposed by Larter and Or-
toleva [12,13] using the Electroneutral Model and more
recently studied by Fromherz and Zimmermann [14–16]
using the Cable Model) or by a coupling between electro-
osmotic flow and ionic currents produced by membrane
proteins [17,18]. The second one proposed by Toko et al.
[36], is due to a peculiar variation of the current with the
concentration of the transfered solute. It has been applied
to particular biological problems by others [37,38]. The
third one is due to a negative differential conductance.
This case of instability is well known in biology [31,39]
(for instance, in excitable media [6,7,20]) and also in phys-
ical systems [40–42]. However, recent works [30] have also
shown that a cell with a negative differential conductance
induces a loop of ionic currents through the cell on the
time characteristic of diffusion.

3 The cable model

In this section, we summarize briefly the well known the-
ory of Cable. It is based on an analogy between cellular
electric behaviour and an electric cable [20–22]. The Cable
equation is derived from Kirchhoff’s law.

3.1 Cable equation

The basic structure of a biomembrane is a lipid bilayer
which is an impermeable barrier to ions. This barrier al-
lows strict control of ionic concentrations in the intracellu-
lar medium by specific membrane proteins. The first class
of these transport systems is the pump which transfers
continuously one or two specific ions from one medium
to another, consuming chemical energy by hydrolysis of
Adenosine TriPhosphate. It generates an electrochemical
gradient across the membrane in the opposite direction.
This is an energetic reserve which is used to transfer ions
in the other direction by the second class of transport sys-
tems: channels, symports and antiports. In this case, I
is proportional to the difference of electrochemical poten-
tial between media: µ = zeφ+ kBT ln(C) in dilute limit
where z is the charge number, φ the electric potential and
C the solute concentration. Usually, the current I has the
following form:

I = G(V −E) (1)

Fig. 3. Equivalent electric circuit of membrane protein activ-
ity. Assembly of the bilayer and a protein constitutes a paral-
lel circuit with characteristic parameters: E the electromotive
force, G the conductance of the protein and Cm the membrane
capacitance.

Fig. 4. Equivalent electric circuit of a cylindrical biomem-
brane. Each previous equivalent circuit of proteins (see Fig. 3)
is linked to another by bulk electrical resistivities (in dark in
figure). Intracellular resistivity ρi is dominant in Cable equa-
tion.

where G is the conductance and

E = kBT ln(Ce/Ci)/ze (2)

the electromotive force, with Ce and Ci the external and
internal concentrations. Relative variations of concentra-
tions due to I are usually very small. Then, in the Cable
formalism, E is assumed to be a constant. Thus, I has
the same form as for a battery of conductance G and elec-
tromotive force E. However, as the lipid bilayer is a good
insulator, current through the protein also induces an elec-
tric potential by capacitive effect. It has been proposed
that local electric activity of a protein is equivalent to an
electric circuit (Fig. 3). Ionic current I passes through in-
ternal and external media. The electric cable description is
derived by connecting local equivalent circuits by internal
electric resistivities ρi (Fig. 4). Propagation is unidimen-
sional. The cell is a rigid cylinder of radius R. A simple
calculation provides the Kelvin equation or Cable equa-
tion [20–22]:

Cm
∂V

∂t
= −I +

R

2ρi

∂2V

∂x2
(3)

where Cm is the membrane capacity per unit area and I
the current through a unit of cellular surface. Numerous
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experiments have checked this equation. Physiologists and
physicists have also long ago, developed a two-dimensional
model of propagation to deal with pattern formation in ex-
citable media [6,7]. They also introduce anisotropic prop-

agation by replacing the term 1
ρi
∂2V
∂x2 by 1

ρix
∂2V
∂x2 + 1

ρiy
∂2V
∂y2

where ρix and ρiy are respectively the x and y resistiv-
ities [6]. Other applications of the Cable equation have
been performed long ago to parallel fiber interactions, in-
teractions at branching points for excitable cells and more
recently, to interactions with a substrate [43]. This list is
not exhaustive.

The derivation of equation (3) assumes several prereq-
uisite conditions as Scott notes in his review [20]:

i) the variations of concentrations are negligible during
all the phenomenon (in the non linear state as well). It
means that the electromotive force is constant, so that
diffusion flux is also neglected;

ii) the ionic flux produced by membrane proteins, doesn’t
depend on concentration. i) and ii) are distinguished
because condition ii) doesn’t involve i);

iii) the characteristic length of the studied phenomenon
must be larger than the cellular radius. Then, electric
potential is roughly constant in the section and exter-
nal variations are expected to be negligible.

These three conditions will be discussed later in Sec-
tion 7.2. They provide the domain of validity of the Ca-
ble Model. Equation (3) can be extended to a flat bidi-
mensional cell if the three conditions are always satisfied.
However, let us note the difference between a flat bidimen-
sional cell (two facing biomembranes) and an isolated flat
biomembrane.

3.2 Ionic currents with a negative differential
conductance

We consider a cylindrical cell and study the linear electric
stability of the membrane potential with the formalism of
the Cable equation. The pumps and channels are assumed
to be fixed. We study the well known instability due to a
negative differential conductance.

The stability of the system is studied for normal mode
fluctuations δui ≈ Ai exp(ωt + ikx) where ui stands for
membrane potential V and electric current I. ω is the
growth rate and k the wavenumber. The fluctuation of
the membrane potential δV induces an ionic current δI.
δI and δV are related by the membrane differential con-
ductance Gd:

δI = GdδV =

(
∂I

∂V

)
V=Vrest

δV (4)

where Vrest is the membrane potential in the resting state.
Let us note that Gd is not equal to the conductance G of
the relation (1):

Gd = (V −E)

(
∂G

∂V

)
+G. (5)

Linearization of equation (3) provides the following dis-
persion relation ω = ω(k):

ω = −
R

2ρiCm

(
k2 +

2ρi
R
Gd

)
. (6)

The necessary condition of instability is a negative dif-
ferential conductance: Gd < 0. Usually, the conductance
Gd is a positive quantity. Then, membrane potential is
stable. However, negative differential conductance exists
in biology [31,39,44–46] and physics [40–42]. Usually, this
negative differential conductance is transient for example,
in animal excitable media (due to sodium and potassium
channels). But, experiments have also brought to the fore,
permanent negative differential conductance as Agin notes
[39]: see references [44,45]. Beilby has shown clearly that
the conductance of potassium channels in Chara corallina
is negative in a large range of membrane potential [46]
from −200 mV to −100 mV in the potassium state at high
pH. One biological characteristic of these channels is that
if the membrane depolarizes, the number of open channels
increases [47]. So, if P (V ) denotes the probability of open-
ing, (∂P/∂V ) is positive. 1 − P (V ) is the probability of
locking. Now, we can explain the origin of this sign. Con-
sider a density N of channels which transfer cations. i(V )
is the current produced by such an insulated open channel.
For usual membrane potentials (about −100 mV), i(V )
through a channel is negative. The macroscopic density I
of ionic current due to the collection of these channels is:

I = NP (V )i(V ). (7)

The characteristic of i(V ) is usually as equation (1):
i(V ) = g(V − E). It means that the conductance g of
an insulated open channel is positive and constant. The
differential conductance Gd satisfies:

Gd = (∂I/∂V ) = N((∂P/∂V )i+ gP (V )). (8)

Thus, the differential conductance Gd can become nega-
tive if the probability of opening varies strongly with mem-
brane potential (stronger than i(V ) at least) [47]. Now,
as an example, we recall a model of probability where
the kinetic constants depend on the membrane potential
(Boltzmann distribution), which is used to describe such
variations [47]:

P (V ) = 1/(1 + exp(zce(Vopen − V )/kBT ) (9)

where zc is a positive charge number characteristic of the
channel, and Vopen is the characteristic membrane poten-
tial of opening. For V � Vopen, the channel is open. In
Figure 5, the curve I = NP (V )g(V −E) vs.membrane po-
tential V reveals a negative differential conductance over
a large range of membrane potential.

Now, in the following, we assume that the differen-
tial conductance is negative. The principle of instability is
that a depolarisation δV > 0 induces an influx of current
δI = GdδV < 0 which in turn, depolarizes the membrane
by capacitive effects.
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Fig. 5. Typical curve of current I through voltage-gated chan-
nels according with the membrane potential V . I is equal to
NP (V )g(V −E) where N is the density, P (V ) the probability
of opening, g the conductance of an insulated channel and E
the electromotive force. In a large scale of membrane potential,
I has got a negative differential conductance Gd = (∂I/∂V ) <
0. For simplicity, we choose Vopen = 0, zceE/kBT = 1 (see text
for details).

Fig. 6. Typical curve of membrane ionic current I according
with the membrane potential V which takes into account dif-
ferent effects (voltage-gated channels, leaks and pumps). Mem-
brane can have three stationary points (I = 0): two stable at
V/V0 = −1 and V/V0 = 2, and one unstable V/V0 = 0 (see
text for details).

Membrane potential is linearly unstable for

k <

(
−

2ρi
R
Gd

)1/2

. (10)

The dispersion relation is a parabola. The characteristic
time of the instability is TC = 1/ω(k = 0):

TC ≈ λ2ρiCm/R (11)

where λ is the characteristic length:

λ2 = −πR/ρiGd. (12)

Another important point is that the most unstable mode
(with the larger growth rate) is the homogeneous one i.e.

k = 0. To know the temporal evolution of such an instabil-
ity, one needs to introduce a relevant nonlinear ionic cur-
rent I to saturate the process. It is reasonable for several
reasons, to think that the cell is dominated by a passive
flux (so, stable Gd > 0) when the membrane potential
is either too depolarized or too hyperpolarized. To my
knowledge, it is always the case experimentally if the elec-
trochemical gradient is too high. For example, the flux
through proteins due to kinetic conformational changes
saturates while the passive flux through the channels and
lipid bilayer increases with the electrochemical gradient.
Then, an unstable point (Gd < 0) is always the neigh-
bour of two stable points (with Gd > 0). To show it more
mathematically, it is sufficient to add a passive current
(proportional to V ) due to the leaks and other passive
proteins and a positive constant active current due to the
pump, to the current I = NP (V )g(V − E) with equa-
tion (9) for the probability. In this case, the curve I vs. V
can have three stationary membrane potentials (I = 0) if
parameters are conveniently chosen. The simplest current
I to model the previous behaviour is a cubic function I
of potential V , appearing in Figure 6. An integration or
a simple numerical study show that the potential tends
always to one of the two stable states. This result is well
known in nonlinear studies [48]. For example, a numerical
simulation is performed in Figure 7. I(V ) is equal to:

I(V ) = I0
V

V0

(
V

V0
+ 1

)(
V

V0
− 2

)
(13)

where I0 is a positive current by unit area and V0 a
positive characteristic voltage. V = 0, V = 2V0 and
V = −V0 are the three stationary states. The former
V = 0 is unstable and the two following V = −1 and
V = 2 are stable. We study the stationary state V = 0
and use the normalized variables Y = V/V0 for the ordi-
nate, X = x(2ρiI0/RV0)1/2 for the abscissa and the time
T = tI0/V0Cm. Y notes the amplitude of the phenomenon
and X the position along the cellular axis. The differen-
tial conductance Gd at V = 0 is negative and is equal to
Gd = −2I0/V0. A white noise of small amplitude (about
5 × 10−5 compared with the final voltage Y of about 2)
is applied around Y = V/V0 = 0 (Fig. 7a). The voltage Y
is followed in Figures 7b-d. The voltage changes from an
uniform voltage Y = 0 to another uniform voltage Y = 2.

Finally, the characteristic time is electric and the final
state is uniform (not periodically modulated), there are
no stationary ionic currents in the final state. However,
this result is in contradiction with recent theoretical and
numerical works using the Electroneutral Model [30].

4 First electrodiffusive model: the
electroneutral model

In this section, we present the Electroneutral Model used
in the literature [12,13,30]. It is an electrodiffusive model
based of course, on the Nernst-Planck and Poisson equa-
tion in the bulk. The important point is the boundary
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Fig. 7. Numerical simulation of the instability around the volt-
age V/V0 = 0. The instability comes from a negative differen-
tial conductance (Fig. 6). In Figure 7a, a white noise of small
amplitude (about 5×10−5 compared to 2 the value in the final
state) is applied around the stationary value V/V0 = 0. The
ordinate (Y -axis) notes the membrane voltage while the ab-
scissa (X-axis) notes the position along the cellular axis. In b,
c, d, the temporal evolution of membrane potential is followed.
Finally, the membrane potential transits from an uniform volt-
age V/V0 = 0 (Fig. 7a) to another uniform voltage V/V0 = 2
(Fig. 7d). There are no ionic currents in the final state (see
text for details).

conditions. It is notably assumed that microscopic elec-
troneutrality is strictly satisfied.

In intracellular and extracellular media, ionic concen-
trations Cj of each ion j and electric potential φ satisfy
Poisson and Nernst-Planck equations:

∆φ =−
eNa

ε

∑
zjCj (14)

∂Cj

∂t
=Dj∆Cj + zj

eDj

kBT
∇ · (Cj∇φ) (15)

where zj is the charge number and Dj the coefficient of
diffusion. In the most general case, internal and external
coefficients of diffusion should be distinguished.

The biomembrane is made of a lipid bilayer with em-
bedded proteins. The permeability of potassium through
proteins is of order of 10−8 m s−1 while the one through
the lipid bilayer is 10−14 m s−1 [49]. Then, the internal
and external electrodiffusive flux of each species are con-
tinuous through the membrane. They are equal to the flux
Jj produced by the specific proteins as pumps, symports,
antiports or channels:

Jj = −Dj(∇Cj + zjCj∇(eφ/kBT ))n (16)

where n is the normal outward vector. Jj is a character-
istic of the proteins which transfer the species j. It de-
pends on membrane potential φi − φe, internal Cji and

external Cje concentrations and sometimes on divalent
cation concentrations, pH, light intensity, ATP [50]... sub-
scripts i and e denote respectively internal and external
parameters.

Now, we assume that the media contain N different
ions. Let us consider the 2N + 2 fluctuations δCji, δCje,
δφi and δφe of concentrations and electric potential which
satisfy linear differential equations of the second order.
4N + 4 boundary conditions are necessary. Fluctuations
are equal to zero far from the membrane in the exter-
nal medium and don’t diverge in the intracellular medium
(but, are not zero far from the membrane), which provides
2N + 2 conditions. The continuity of extracellular and in-
tracellular ionic flux (Eq. (16)) gives 2N other boundary
conditions.

The two lacking conditions are based on the evaluation
of the Debye time TDeb. In ionic solutions, charges are
screened on the Debye length λD = χ−1:

λD = χ−1 =

 εkBT

e2Na
∑

z2
jCj0

 (17)

where Cj0 are the concentrations far from the membrane.
In physiological experiments, the Debye length is close to
1 nm.

Then, the characteristic time TDeb to reach electroneu-
trality is about TDeb ≈ λ2

D/D ≈ 1 ns where D ≈
10−5 cm2/s is a typical value of coefficient of ionic dif-
fusion. TDeb is much smaller than all other characteristic
times in the problem. Thus, in the Electroneutral Model,
variations of ionic charges are neglected. Then, the two
last conditions to close the system are:

δρi = eNa
∑
j

zjδCji = 0 (18)

δρe = eNa
∑
j

zjδCje = 0 (19)

where δρi and δρe are respectively the intracellular and
extracellular fluctuations of charge densities. I emphasize
that the works which use this model, apply it to electric
phenomena a priori, sufficiently slow, such as protein ag-
gregation [12,13] and ionic currents [30] (it is not applied
to pattern formation in excitable media [51]).

Applying (18, 19) to the equality between internal
and external currents (Eq. (16)) provides the following
relation:

n · ∇φi = n · ∇φe. (20)

The conditions (18, 19) simplify greatly the linear prob-
lem because, the fluctuations of concentrations δCj and
potential δφ satisfy the following equations:

∂δCj

∂t
=Dj∆δCj (21)

∆δφ =0. (22)

In this electrodiffusive formalism, it is assumed that the
microscopic electroneutrality is satisfied anywhere (even
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in the Debye layer). For this reason, we call it the Elec-
troneutral Model. In the following section, we compare it
with the Cable Model.

5 First discussion: comparison between the
electroneutral model and the Cable Model
results

In literature, it has been proposed analytically and numer-
ically using the Electroneutral Model, that a loop of ionic
currents could result from a negative differential conduc-
tance [30]. We compare the results using the Electroneu-
tral Model and the Cable Model (Sect. 3.2). In Section
5.1, we focus on the physical sense and in Section 5.2, on
a more mathematically detailed point of view.

5.1 Discussion of the physical results

In the literature, it has been proposed analytically and
numerically [30] that ionic currents could result from a
negative differential conductance. The results using the
Electroneutral Model, are the following:

i) membrane potential is linearly unstable,
ii) the final state is a loop of stationary ionic currents

through the cell,
iii) the characteristic time T of the instability is a diffusion

time: TD ≈ λ2/D where λ is the wavelength of the
phenomenon and D the coefficient of ionic diffusion.

These predictions are in contradiction with the results
deduced from the Cable Model on two main points (see
Sect. 3.2). First, the physical nature of characteristic times
is different. In the Electroneutral Model, T is a diffusion
time TD ≈ λ2/D. In the Cable Model, T is the electric
time TC :

TC ≈ λ
2ρiCm/R ≈ λ

2Cm/εDχ
2
iR. (23)

We have used the identity: ρi = 1/εDχ2
i . For that matter,

the ratio of these two times is independent from wave-
length and can be evaluated for relevant parameters:

TC/TD ≈ Cm/εχ
2
iR ≈ 10−6 (24)

where Cm ≈ 10−2 F m−2, 1/χi ≈ 1 nm and R ≈ 10 µm.
This numerical evaluation highlights the difference be-
tween the Electroneutral Model and the Cable Model. In
fact, a phenomenon with a small characteristic time com-
pared to others, can only be neglected if it’s not intimately
linked to the characteristic time of the instability.

The second difference concerns the final state. Using
the Electroneutral Model, ionic currents are generated and
pass through the cell. In the Cable Model, there are no
ionic currents. The system is unstable. It transits from
an uniform membrane potential to another uniform one,
both of them without ionic currents as indicated in the
simulation of Section 3.2.

Therefore, the results using the Electroneutral Model
are not in agreement with those using the Cable Model.
We claim that the origin of the discrepancy comes from
the assumption of microscopic electroneutrality. Long ago,
Agin noted the impossibility of microscopic electroneutral-
ity in active biomembranes [52] (but, he considered rapid
phenomena such as pulse). One means to understand sim-
ply this effect is to consider a spherical cell. Let us assume
that an external message (a transfer dark-light for a veg-
etable cell for example) induces an increased pump activ-
ity. These expulse uniformly and specifically, cations (pro-
tons for a vegetable cell) from the intracellular medium to
the extracellular one which is not initially compensated.
Thus, this process generates a deficit of cations in the in-
ternal medium and an excess in the external medium. Af-
ter that, the net transfer of charges stops when the passive
flux due to the channels and the lipid bilayer compensates
the pump flux. The final result is a difference of charges
between internal and external media which is the mark
of membrane electrical activity. This is known in electro-
physiology.

5.2 Discussion of mathematical results

We discuss more accurately the results of the literature
using the Electroneutral Model and for instance, the ex-
istence of mathematical and physically relevant solutions.

For simplicity, we choose to deal with a flat isolated
membrane (it means kR � 1). The axis x and z are re-
spectively, parallel and orthogonal to the membrane. We
want to determine the dispersion relation on the basis of
the Electroneutral Model. We consider two concentrations
C1, C2 and the electric potential φ. The fluctuations sat-
isfy equations (21, 22) and are:

δC1,2 = a1,2e
±szeωt+ikx

δφ = be±kzeωt+ikx (25)

where s2 = k2 + ω/D, b and a1,2 are constants. z is the
normal coordinate.

We choose s such that the real part Re(s) of s is posi-
tive: Re(s) > 0. The sign ± is + for intracellular medium
and − for extracellular medium.

Using boundary conditions, extracellular constants are
linked to intracellular ones by: be = −bi, a1e = −a1i and
a2e = −a2i. The condition of microscopic electroneutrality
provides: z1a1 + z2a2 = 0.

Then, we use the boundary conditions on J1 and
z1J1 + z2J2:

−J1/D =

(
∂C1

∂z

)
+

ez1

kBT
C10

(
∂φ

∂z

)
(26)

−(z1J1 + z2J2)/D =
e

kBT
(z2

1C10 + z2
2C20)

(
∂φ

∂z

)
. (27)
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We have the following determinant:[
eDC0k

kBT
+ 2

(
z1

(
∂J1

∂φ

)
+ z2

(
∂J2

∂φ

))]
bi

+ z1

[(
∂J1

∂C1i

)
−

(
∂J2

∂C2i

)]
a1i = 0 (28)[

2

(
∂J1

∂φ

)
+

e

kBT
z1C10Dk

]
bi

+

[(
∂J1

∂C1i

)
+ sD

]
a1i = 0 (29)

where C0 = z2
1C10 +z2

2C20. We have introduced the varia-
tions of J1 and J2 respectively, with the intracellular ionic
concentrations C1 and C2 [53].

As in [30], J1 only depends on the membrane potential
and has a negative differential conductance (z1(∂J1/∂φ) <
0). J2 depends on membrane potential and intracellular
concentration C2i [53]. This last dependance is stable:
(∂J2/∂C2i) > 0 [36]. The total differential conductance
is still negative: z1(∂J1/∂φ) + z2(∂J2/∂φ) < 0.

Let us discuss the marginal mode (ω = 0). For simplic-
ity, we now assume that the variations of J1 and J2 with
the intracellular concentrations are negligible because, the
instability comes a priori, from the negative differential
conductance. Then, equations (28, 29) provide the follow-
ing equation:[

k + 2
kBT

eDC0

(
z1

(
∂J1

∂φ

)
+ z2

(
∂J2

∂φ

))]
k = 0. (30)

We deduce easily the two possible solutions:

k = 0 and k = −2
kBT

eDC0

(
z1

(
∂J1

∂φ

)
+ z2

(
∂J2

∂φ

))
.

(31)

However, the dispersion relation must be studied carefully
before a conclusion. If we still neglect the variations of
J1 and J2 with the intracellular concentrations, (28, 29)
provide the following dispersion relation:[

k + 2
kBT

eDC0

(
z1

(
∂J1

∂φ

)
+ z2

(
∂J2

∂φ

))]
s = 0. (32)

Then, the dispersion relation is s = 0 or more physically,
ω = −Dk2. So, the relevant marginal mode is k = 0 (and
not the other (31)). The negative differential conductance
plays no role. There is no instability in the Electroneutral
Model as ω is always negative. This result is in contradic-
tion with the previous ones [30].

However, in the literature, the dependence of J2 on
concentrations is used. An instability is obtained numer-
ically [30]. We must be able to understand such a result
before a conclusion. We take the same assumptions. Then,
the dispersion relation is:

s =
[ ω
D

+ k2
]1/2

= −
z2

1C10

C0D

(
∂J2

∂C2i

)
k − p

k − q
(33)

where:

p =
−2kBT

eDz2
1C10

z1

(
∂J1

∂φ

)
(34)

q =− 2
kBT

eDC0

(
z1

(
∂J1

∂φ

)
+ z2

(
∂J2

∂φ

))
(35)

p and q are positive and q < p as z2
1C10 < C0 and

z2

(
∂J2

∂φ

)
> 0.

For p > k > q, the growth rate ω exists mathemat-
ically. r is the wave vector such that the growth rate is
equal to zero. For p > k > r, the system is stable (ω < 0)
while it is unstable (ω > 0) for r > k > q. We think
that the numerical simulation is probably performed in
the scale q < k < p [30].

Moreover, for k < q and k > p, there is surprinsingly,
no mathematical solution as the real part of s must be
positive by definition. Moreover, for k = q, the right mem-
ber of (33) diverges. Then, the domain of mathematical
validity of the Electroneutral Model is particulary tight:
(p− q)/p ≈ 1− z2

1C10/C0.
The study of the Electroneutral Model on this insta-

bility provides the following interesting results:

– the Electroneutral Model is in contradiction with the
Cable Model on crucial points. From our point of view,
this criticism is fundamental because, the Cable equa-
tion has been checked experimentally [23–25];

– even when we assume that the Electroneutral Model is
correct, we don’t recover the results in the literature.
For example, ω ≈ −Dk2 when the dependance with
concentrations is neglected;

– the Electroneutral Model provides dubious mathe-
matical results in the case of the studied instability.
There is no mathematical solution in a large scale of
wavenumbers k.

Finally, we think that the Electroneutral Model is not
suitable to study electric behaviour of biomembranes. It
means notably, if the ionic flux at the membrane depends
on membrane electric potential, this model cannot be ap-
plied. However, we think that this model could be applied
if the ionic flux at membrane doesn’t depend on membrane
potential in a first approximation [54].

6 The second electrodiffusive model: the
Biomembrane Electrodiffusive Model (BEM)

The aim of this part is to propose an electrodiffusive model
(based on Nernst-Planck and Poisson equations in the
bulk) which is in agreement with the Cable Model. The
important point is to derive physically compatible bound-
ary conditions.

Our model (notably, the boundary conditions) will be
correct if the following two criteria are fulfilled:

– we must recover the Cable predictions for the instabil-
ity in the case of a negative differential conductance;
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– we must be able to derive the Cable equation on the
basis of this new microscopic model.

To our mind, the last criterion will be the most con-
vincing. Notably, it will be interesting to compare the as-
sumptions in the derivation to the limits of validity of the
Cable equation [20]. The derivation is provided in Sec-
tion 7.1.

6.1 The Biomembrane Electrodiffusive Model (BEM)

First, in extracellular and intracellular media, concentra-
tions Cj and electric potential φ satisfy Nernst-Planck and
Poisson equations. We have recalled these in Section 3:
equations (14, 15).

We consider the same physical quantities as in the
Electroneutral Model:N ionic concentrations and the elec-
tric potential in each medium. As we don’t consider the
microscopic electroneutrality, we establish two other con-
ditions considering spatial variations of the electric field
inside the membrane.

The biomembrane is made of a lipid bilayer with em-
bedded proteins. The lipid bilayer conductance is about
10−5 S m−2 to compare with 1 S m−2, a usual value in
biomembranes. In terms of resistivities, the bilayer one is
about 1013 Ω m to compare with 108 Ω m in a biomem-
brane and 1 Ω m in ionic solutions [20]. Then, a lipid bi-
layer should be classified as a very good insulator. It is
valid to neglect its permeability compared with that of
proteins. Therefore, it is valid to consider a membrane
charge equal to zero (at least, for the dynamics). The
membrane electric field Em satisfies:

∇ ·Em = 0. (36)

The relative variation of the normal electric field
n ·Em across the biomembrane (n · Em(internal) −
n·Em(external))/mean value of (n·Em ) is about d/L. d is
the membrane thickness about 5 nm. L is either the cellu-
lar radius or the characteristic wavelength of the studied
phenomenon. Then, it is valid to neglect the normal vari-
ations of n ·Em in membrane as long as d/L� 1. Let us
emphasize that it is the stepping stone of our model. It is
satisfied in all the spatiotemporal phenomena in biological
cells to our knowledge.

Tangent electric fields are continuous. Membrane lipids
could be charged which induces discontinuities in normal
electric field across the membrane:

εn ·Ee − εmn ·Em = σe and εmn ·Em − εn ·Ei = σi
(37)

where σe and σi are the surface charges at the membrane,
εm the permittivity of lipid bilayer. Ee and Ei are respec-
tively electric fields at membrane in external and internal
mediums. Adding the two equations (37) provides a first
boundary condition:

n ·Ee − n ·Ei = (σe + σi)/ε. (38)

Without surface charges (or for fluctuations), (38) is equal
to (20) of the Electroneutral Model. However, the two
derivations are physically different. In the BEM, (38) is the
classic discontinuity of normal electric field at the passage
of a charged surface. In the Electroneutral Model, (20) is
due to the microscopic electroneutrality.

Substracting the two equations of (37) gives:

2εmn ·Em = ε(n ·Ei + εn ·Ee) + σi − σe. (39)

Then, we integrate the two members of this equality
over the membrane thickness. The first member provides:∫

n ·Emdr = −
∫

n·∇φmdr = φi−φe. Therefore, the sec-
ond boundary condition is:

φi − φe =
εd

2εm
(n ·Ee + n ·Ei) +

d(σi − σe)

2εm
· (40)

We note that another quantity εm/d appears in this sec-
ond model contrary to the Electroneutral Model. Without
surface charges and in the resting state

∑
j zjJj = 0, ap-

plying (16), (40) is equal to:

(φi − φe) ≈ (d/εm)n · ∇ρi/χ
2 (41)

in the resting state.
n ·∇ρi/χ2 is the quantity of charge in the Debye layer

close to the membrane. Then, we recover the capacitive
behaviour as in the Cable approach:

Cm = εm/d. (42)

It corresponds to a flat capacitance as we have neglected
the effects of cellular curvature (d/L� 1).

Let us emphasize that in the BEM, the charge is “free”
to be zero or not. For instance, if we assume electroneu-
trality in the resting state, n·∇ρi = 0 and the membrane
potential φi−φe is equal to zero. Then, in this second elec-
trodiffusive model, the membrane potential is correlated
with the lack of microscopic electroneutrality. Of course,
the charge is limited to the Debye layer. Then, variations
of membrane potential are mainly due to a net transfer of
charges. We emphasize that we have neglected the spatial
variations of charges inside the protein [55].

In the following, we apply the BEM to the negative dif-
ferential conductance instability and compare the results
with those of the Cable Model. However, let us note now
that the equations (40, 38) establish a difference between
the membrane surface charges and the charges in the De-
bye layers. It could be possible with BEM to investigate
their quantitative role if a chemical binding of ions to the
membrane is allowed.

6.2 The negative differential conductance instability

We consider a cylindrical cell of radius R. The following
general assumptions are made:

i) the ionic flux Jj of each species j at the membrane
only depends on the membrane potential and not on
concentrations;
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ii) only unidimensional modes are considered;
iii) no ionic binding-release chemical reactions with mem-

brane lipids and proteins or fixed negative charges in
volume due to macromolecules;

iv) the gradients of concentrations and electric potential
in the Debye layer are neglected in the linear analy-
sis of stability. It means that concentrations and elec-
tric potential are assumed to be uniform in the resting
state.

For simplicity sake, we consider two ions 1 and 2. The
characteristic quantities of the system are the charge num-
bers z1 and z2, concentrations C10 and C20 in the station-
ary state and the coefficient of diffusion D. We distinguish
the external and internal quantities by subscripts i and e.
Fluctuations δφ, δC1 and δC2 satisfy linearized equations:

∂δCj

∂t
= D∆δCj +

eD

kBT
zjCj0∆δφ (43)

∆δφ = −
δρ

ε
· (44)

We look for modes of the type f(r)eikx+ωt where k is the
wavenumber and ω the growth rate. The charge fluctua-
tion δρ = eNa(z1δC1 + z2δC2) satisfies:

∂δρ

δt
= D∆δρ−Dχ2δρ. (45)

If we denote δρ = f(r)eikx+ωt, one gets:

d2f

dr2
+

2df

rdr
− s2f = 0 (46)

where s2 = k2 + ω
D

+ χ2. The real part of s is assumed to
be positive.

Then, solutions of (46) are Bessel functions of imagi-
nary argument:

δρi =aiεχ
2
i

kBT

e
I0(sir)e

ikx+ωt (47)

δρe =aeεχ
2
e

kBT

e
K0(ser)e

ikx+ωt (48)

where ai and ae are constants. We have used the fact that
fluctuations are equal to zero far from the membrane. The
charges are screened on the Debye length as s ≈ χ checked
in the following.

We follow the same procedure for the electric poten-
tial δφ:

δφi =
kBT

e
(biI0(kr) −

χ2
i

s2
i − k

2
aiI0(sir))e

ikx+ωt (49)

δφe =
kBT

e
(beK0(kr) −

χ2
e

s2
e − k

2
aeK0(ser))e

ikx+ωt (50)

where bi and be are constants.
In the following, we assume that internal and exter-

nal parameters are equal (see Sect. 6.5 in the contrary

case). Thus, the boundary conditions (16, 38) provide the
following relations between coefficients:

be =
I ′0(kR)

K ′0(kR)
bi and ae =

I ′0(kR)

K ′0(sR)
ai (51)

where I ′0 and K ′0 are respectively the derivatives of I0
and K0.

Fluctuations satisfy the boundary conditions (16,40).
We do the relevant assumption: χR � 1 which is always
satisfied in physiological conditions. Then, the dispersion
relation ω = ω(k) is:

ω =
2Gd
sε

−

(
2

s
+
εd

εm

)
Dχ2

k
I′0
I0

(kR) + Gd
εDχ2

(
1− K0I

′
0

K′0I0
(kR)

)
(

1−
K0I′0
K′0I0

(kR)
)

+ εd
εm
k
I′0
I0

(kR)

(52)

where Gd is the differential conductance:

Gd = eNa

(
z1

(
∂J1

∂φ

)
+ z2

(
∂J2

∂φ

))
. (53)

If we consider a perfectly insulating membrane (Gd = 0)
and the limit d close to zero, the growth rate ω becomes
independent of the membrane capacitance. Then, in the
short wavelength limit (kR� 1), ω is of order of

−Dχk (54)

which is in agreement with the case of an ionic solution.

The term
(

2
s

+ εd
εm

)
reduces to εd

εm
as εd

εm
s ≈ 100� 1

because s ≈ χ (checked in the following). Moreover, the
second term of the right member of (51) is about Gdd

εm
.

Then, the ratio of the second term on the first one of the
right member is about εd

εm
s� 1.

The dispersion relation (52) reduces to:

ω = −
εd

εm
Dχ2

k
I′0
I0

(kR) + Gd
εDχ2

(
1− K0I

′
0

K′0I0
(kR)

)
(

1−
K0I′0
K′0I0

(kR)
)

+ εd
εm
k
I′0
I0

(kR)
· (55)

If εd
εm
k � 1, ω/Dχ2 ≈ 1 while ω/Dχ2 � 1 if εd

εm
k�1.

Then, in the previous limits, the condition s ≈ χ is
checked.

Equation (55) simplifies in the limits of a short wave-
length kR� 1 or a large wavelength kR� 1:

kR� 1 : ω =−
εd

2εm
Dχ2

2Gd
εDχ2 + k

1 + εd
2εm

k
(56)

kR� 1 : ω =−
εd

2εm
Dχ2

(
2Gd
εDχ2

+ k2R

)
· (57)

At the denominator of (57), there is the term
1 + εd

εm
k2R/2 ≈ 1 as kR� 1. Two different typical curves

are derived depending on the geometry.
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6.3 Comparison between cable equation and BEM
results

To compare results with the Cable equation, it is useful
to take the same notations: εDχ2 = 1/ρi = 1/ρe.

Firstly, as noted in the previous Section 6.1, the growth
rate is proportional to the capacitance Cm = εm/d.

Secondly, in the limit of large wavelength, the disper-
sion relation is the same than the Cable one (Eq. (6) in
Sect. 3.2). This result is satisfactory because, large wave-
length corresponds to one of the Cable validity’s condition
(condition iii in Sect. 3.1).

The characteristic time T at k = 0 can be recov-
ered simply. Consider an uniform disturbance of charge
densities: δρe and δρi. These charges are spatially local-
ized at the membrane, in the Debye layer of width χ−1.
As χR � 1 where R is the cellular radius, δρe(r =
R) ≈ −δρi(r = R). The equivalent surface charges are
respectively χ−1δρe and χ−1δρi. The capacitive nature
of the membrane potential provides: χ−1δρi ≈ Cm(δφi −
δφe)r=R. An ionic current is induced: δI ≈ Gd(δφi −
δφe)r=R ≈ (Gdχ

−1/Cm)δρi(r = R). The characteristic
time T of the process measures the rate of charge accumu-
lation at the membrane: TδI ≈ −χ−1δρi(r = R). The neg-
ative sign means that an influx of charges (δI < 0) induces
an increase of intracellular charges (δρi(r = R) > 0).
Combining the previous equations provides T ≈ −Gd/Cm
in agreement with the previous result of the dispersion re-
lation (57). It is the characteristic time at k = 0. In this
evaluation, we emphasize that no diffusive parameters are
taken into account.

Finally, we recover the results of the Cable Model
(Sect. 3.2) in its domain of validity.

6.4 The effect of geometry

In the limit of a short wavelength kR > 1, as in the case
of ionic currents in Fucus for example, the variation of the
growth rate with k is linear (Eq. (56)) and not parabolic
(Eq. (57)) contrary to the cable equation predictions. The
dependence on the wavelength has never (to our knowl-
edge) been analysed quantitatively [56] (for instance, the
limit kR � 1). However, we emphasize that the physics
in the two limits are the same. It means that the growth
rate is still proportional to electric parameters such as
membrane capacitance and bulk conductivity. The main
physical reason of this effect is the geometrical constraint.
For kR � 1, the intracellular ionic current is limited to
flow in a confined medium. Then, the intracellular electric
potential becomes larger than the extracellular one as it
is shown in the derivation of the Cable Model in 7.1.

We have also recently [18], applied the effect of geom-
etry to protein aggregation in flat isolated cellular mem-
branes for the electro-osmotic and Larter-Ortoleva insta-
bilities. This last instability can also be a test for the BEM
because, it has been proposed initially by Larter and Or-
toleva using an Electroneutral Model [12,13] and more
recently studied by Fromherz using the Cable Model [14–
16]. If we only consider the variations of the ionic current

with the local concentration of proteins (conductance ne-
glected), the results are different. The results obtained
with the BEM are similar to those obtained by Fromherz
[57] in the limit of large wavelengths. Then, the BEM com-
pared to the Electroneutral Model, is once again validated.

6.5 The effect of asymmetrical media

In Section 6.2, we have assumed the same electric proper-
ties in intracellular and extracellular media while it can be
different. The first reason is the difference in ionic concen-
trations due notably to the activity of pumps, metabolism
and Turgor regulation. The second reason is due to the
difference in coefficient of diffusion due to the slight dif-
ference between the physical properties of the external
and internal media. Moreover, coefficients of diffusion (no-
tably, the cations) between internal and external, are also
different due to intracellular binding-release chemical re-
actions with intracellular negative proteins [58].

Then, we distinguish the Debye lengths χ−1
i and χ−1

e

and the coefficients of diffusion Di and De. The intracellu-
lar and extracellular fluctuations of density of ionic charge
and electric potential satisfy equations (47-50). In intra-
cellular medium, s2

i = χ2
i+k2+ω/Di while in extracellular

medium, s2
e = χ2

e+k2 +ω/De. In asymmetrical media, we
cannot determine the constants be and ae according to bi
and ai respectively, as in the case of symmetric media (Eq.
(51)). Then, we must solve a 4× 4 determinant. However,
the procedure of determination and simplification (how-
ever, longer) of the dispersion relation is similar to the
symmetric problem.

To simplify the dispersion relation, we restrict the
study to k < −10 (Gd/εDχ

2). Then, the dispersion rela-
tion ω = ω(k) satisfies aω2 + bω+ c = 0 where coefficients
a, b and c are:

a =
I ′0
I0
−
K ′0
K0
−
εd

εm
k
I ′0K

′
0

I0K0
(58)

b = Diχ
2
i

I ′0
I0
−Deχ

2
e

K ′0
K0
−

εd

2εm
k
I ′0K

′
0

I0K0
(Diχ

2
i +Deχ

2
e)

+
εd

εm
DiDe

[
2Gd
ε

(
I ′0
I0
−
K ′0
K0

)
− k

I ′0K
′
0

I0K0

(
Diχ

2
i +Deχ

2
e

)]
(59)

c =
εd

εm

[
Gd

ε

(
Diχ

2
i

I ′0
I0
−Deχ

2
e

K ′0
K0

)
−k

I ′0K
′
0

I0K0
Diχ

2
i +Deχ

2
e

]
(60)

where I0, I ′0, K0 and K ′0 are determined for the argument
kR.

In the general case, we cannot a priori, simplify this
system. Then, we don’t recover the point of view of Scott
which sums the internal and external resistivities. How-
ever, Scott considers only large wavelengths. Then, this
discussion is restricted to the condition εd

εm
k � 1. In this
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case, the growth rate satisfies the following simple equa-
tion with a resistance sum:

ω = −
d

εm

k + (ρi + ρe)Gd
ρi + ρe

(61)

where

ρi =
1

εDiχ
2
i

I ′0
I0

(kR) (62)

and

ρe =
−1

εDeχ2
e

K ′0
K0

(kR). (63)

εDeχ
2
e and εDiχ

2
i are the ionic conductivities of extracel-

lular and intracellular media.
Equation (61) provides the same discussion as (55):

the uniform perturbation is the most unstable, the char-
acteristic time is electric and not diffusive.

For simplicity, we study only, the marginal mode
kc (ω = 0) which satisfies:

kc = −
Gd

εDiχ
2
i

I ′0
I0

(
1−

Diχ
2
i

Deχ2
e

I0K
′
0

I ′0K0

)
(64)

for kcR� 1: kc = −
Gd

ε

(
1

Diχ
2
i

+
1

Deχ2
e

)
(65)

for kcR� 1: kc =

[
−2Gd
εDiχ

2
iR

]1/2

. (66)

We recover that in the large wavelength limit, only the
electric contribution is important. If we consider the same
conductivities in internal and external media, the effect
of geometry appears when the wavelength becomes larger
than the cellular radius because, the current must flow in
a restricted volume.

As a conclusion, the analysis of the negative differen-
tial conductance instability is convincing. We now want
to derive the intimate relation between the BEM and the
Cable Model. For instance, we show that the Cable Model
is the limit of the BEM in the limit of large wavelengths
(with some assumptions).

7 Second discussion: derivation of the Cable
Model

7.1 Derivation of the Cable Model on that the BEM

The Cable equation is only established phenomenologi-
cally in Section 3.1 from Kirchoff’s law. In this part, we de-
duce the Cable Model from Nernst-Planck equations with
specific boundary conditions (the Biomembrane Electrod-
iffusive Model). We consider a cylindrical cell of radius R.
However, the forthcoming procedure is general.

The first assumption is to consider a unidimensional
mode of propagation. Then, concentrations and electric

potential only depend on radial and axis coordinates, re-
spectively r and x (no dependence on the angular one).
It corresponds to the condition ii) of the Cable Model
validity.

We define the following new quantities where u stands
for the concentrations C1, C2 and the electric potential φ:

〈δui〉 =
2

R2

∫ R

0

rδuidr (67)

〈δue〉 =
2

R2

∫ +∞

R

rδuedr (68)

where δ denotes the fluctuations. Let us note that an
implicit assumption is the validity (no divergence) of
(67, 68). It is easy to check it with fluctuations provided
by Section 6.2.

The second assumption is that the variations of con-
centration are negligible during all the phenomena (in the
non linear state also). It is the condition ii) of the Cable
Model validity.

Then, we integrate on intracellular medium, the lin-
earized Nernst-Planck equation (43):

∂〈δCji〉

∂t
= Dji

∂2〈δCji〉

∂x2
+
eDji

kBT
zjCj0i

∂2〈δφi〉

∂x2

+
2Dji

R

((
∂δCji

∂r

)
+

e

kBT
zjCj0i

(
∂δφi

∂r

))
r=R

. (69)

Using the continuity of the electrodiffusive flux through
the membrane (boundary condition (16)) provides:

∂〈δCji〉

∂t
= Dji

∂2〈δCji〉

∂x2
+
eDji

kBT
zjCj0i

∂2〈δφi〉

∂x2
−

2

R
Jj .

(70)

By the same procedure on the extracellular medium, we
have:

∂〈δCje〉

∂t
= Dje

∂2〈δCje〉

∂x2
+
eDje

kBT
zjCj0e

∂2〈δφe〉

∂x2
+

2

R
Jj .

(71)

The integration of Poisson equation (44) provides:

∂2〈δφi〉

∂x2
+

2

R

(
∂δφi

∂r

)
r=R

= −
〈δρi〉

ε
· (72)

∂2〈δφe〉

∂x2
+

2

R

(
∂δφe

∂r

)
r=R

= −
〈δρe〉

ε
· (73)

The third assumption is that ions diffuse with the same co-
efficient of diffusion Di and De respectively in the intracel-
lular and extracellular media. It is convenient to introduce
the following electric charges 〈δρi,e〉 = eNa(z1〈δC1i,e〉 +
z2〈δC2i,e〉):

∂〈δρi〉

∂t
= Di

∂2〈δρi〉

∂x2
+ εDiχ

2
i

∂2〈δφi〉

∂x2
−

2

R
I (74)

∂〈δρe〉

∂t
= De

∂2〈δρe〉

∂x2
+ εDeχ

2
e

∂2〈δφe〉

∂x2
+

2

R
I. (75)
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The fourth assumption is that external and internal Debye
lengths and coefficients of diffusion are equal. Now, we set
the following quantities:

〈δρ〉 = 〈δρi〉 − 〈δρe〉 and 〈δφ〉 = 〈δφi〉 − 〈δφe〉. (76)

Subtracting (74,75) in the one hand and (72,73) on the
other hand, provides:

∂〈δρ〉

∂t
= D

∂2〈δρ〉

∂x2
+ εDχ2 ∂

2〈δφ〉

∂x2
−

4

R
I (77)

∂2〈δφ〉

∂x2
+

2

R

((
∂δφi

∂r

)
+

(
∂δφe

∂r

))
r=R

= −
〈δρ〉

ε
· (78)

Then, we use the BEM introduced in this article and no-
tably the boundary condition (40) on membrane potential:

∂2〈δφ〉

∂x2
−

4εm
Rεd

(δφi − δφe)r=R = −
〈δρ〉

ε
· (79)

It is now useful to link external variations 〈δφe〉 and 〈δρe〉
to internal variations 〈δφi〉 and 〈δρi〉. Due to the Debye
screening χR = R/λD� 1, we have:

〈δρi〉 ≈
2

R2

∫ R

R−λD

rδρidr ≈
2

χR
δρi(r = R) (80)

〈δρe〉 ≈
2

R2

∫ R+λD

R

rδρedr ≈
2

χR
δρe(r = R). (81)

From the condition
(
∂δρi
∂r

)
r=R

=
(
∂δρe
∂r

)
r=R

deduced

from (16, 38). For χR� 1, we deduce:

δρi(r = R) = −δρe(r = R). (82)

Then, we have from (80, 81):

〈δρi〉+ 〈δρe〉 = 0. (83)

It is the condition of macroscopic electroneutrality (and
not microscopic). Let us note that the charge δρi,e(r = R)
close to the surface is much larger that the mean charge
〈δρi,e〉 on the section.

So, the sum of equations (72, 73) provides with (83):

∂2〈δφi〉

∂x2
+
∂2〈δφe〉

∂x2
+

2

R

((
∂δφi

∂r

)
−

(
∂δφe

∂r

))
r=R

= 0.

(84)

Using the boundary condition (38), we obtain:

〈δρi〉+ 〈δρe〉 = 0. (85)

However, (85) doesn’t mean that for r = R, δφi = −δφe.
This identity is only valid in the limit of a short wavelength
(kR� 1).

The fifth assumption is that the wavelength of the phe-
nomenon λ = 2π/k is much larger than the cellular radius
R: kR� 1. We now want to show that the variations δV
of the membrane potential are dominated by the intracel-
lular one: δV ≈ 〈δφi〉.

To simplify, we work on the fluctuations of the Sec-
tion 6.2 and we consider only, the marginal mode (ω = 0)
in the following evaluations. We set: δφi = δφi1 + δφi2
where δφi2 = −δρi/εχ2. In the limit kR � 1, δφi1(r =
R)/δφi2(r = R) ≈ εd

εm
χ � 1. The conditions (37, 39) of

the BEM have been used. So, as δφi1 varies slightly on the
cellular radius R, we obtain:

〈δφi〉 ≈ δφi(r = R) ≈ δφi(r = 0). (86)

In extracellular medium, we set δφe = δφe1 + δφe2 where
δφe2 = −δρe/εχ2. The ratio δφe1 on δφe2 is about
εd
εm
χ
K0I

′
0

K′0I0
(kR) � 1 in the limit kR � 1. We have used

the boundary conditions (38, 40). Then, usually (at least,
when the Debye length is not too small), δφe1(r = R) �
δφe2(r = R). Let us note that it is the contrary in
intracellular medium. Moreover, (82) implies δφe2(r =
R) ≈ −δφi2(r = R). It is now easy to evaluate the ra-
tio between internal and external fluctuations for r = R:
δφi/δφe ≈ δφi1/δφe2 ≈ δφi1/δφi2 ≈

εd
εm
� 1. Finally, the

variation of membrane potential δV = (δφi − δφe)r=R is
dominated by the variation of intracellular electric poten-
tial δφi in the limit of large wavelength. Then, considering
these evaluations and (85, 86), we have the relation:

δV = (δφi − δφe)r=R ≈ δφi ≈ 〈δφi〉 ≈ −〈δφe〉 ≈ 〈δφ〉/2.
(87)

The last step is to simplify the equation (79). ∂2〈δφ〉
∂x2 ≈

k2〈δφ〉. The ratio between the two terms of the left mem-

ber of (79) provides ∂2〈δφ〉
∂x2 / 4εm

εdR
δV ≈ k2Rεd

4εm
� 1 in the

large wavelength limit. Then we recover the capacitive na-
ture of the membrane potential:

4εm
Rd

δV = 〈δρ〉. (88)

So, using the equations (88, 87, 77) and Cm = εm/d, δV
satisfies the following equation:

Cm
∂δV

∂t
= δI +

(
DCm +

εDχ2R

2

)
∂2δV

∂x2
· (89)

The ratio between DCm and εDχ2R is about:
DCm/εDχ

2R ≈ 10−11/R� 1. Thus, the Cable equation
is recovered.

Finally, the Cable equation (3) is derived by a complete
integration of Nernst-Planck and Poisson equations. The
BEM allows us to derive the relation (88) which is the ba-
sis of the demonstration. The capacitive current appears
without an assumption on the nature of the transmem-
brane current. For instance, we don’t state initially that a
capacitive current exists explicitly and we solve fully the
electrodiffusive equations (even in the Debye layer). These
two points constitute the fundamental differences with the
previous work [59]. For another difference, the BEM dis-
tinguish clearly the charges in the Debye layers and the
surface charges. The Cable Model appears as the limit of
the BEM for large wavelengths.
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7.2 Discussion about the demonstration and possible
applications of the BEM

We present the necessary comments on the derivation in
Section 7.1 and we propose some possible applications of
the BEM to biological problems.

– A first comment on the derivation of the Cable equa-
tion is that it was only valid for kR � 1. One of the in-
terests of the BEM framework is its validity for any wave-
length and its relevance to describe radial variations of the
current, the concentrations and the electric potential. For
example, Fucus algae generates a dipolar ionic circulation
[29]. Thus, k R is about 1 in such a system. A second
example is the development of pH bands in Chara coral-
lina [4]. When the cytoplasmic streaming is inhibited by
Cytochalasine D [60], it seems that pH varies also on the
circumference: kR > 1. Moreover, to study properly the
ionic currents, it is necessary to understand the variations
of physical quantities othogonal to the membrane. For ex-
ample, in Chara corallina, the electric potential varies as
1/r in an acidic band and as 1/r2 in a basic band. It is im-
possible to predict such behaviours with the Cable Model
because, it considers only the variations parallel to the
cell. Then, comparisons between experiments and theory
become difficult.

– A second comment is on the comparison between
δφe and δφi. The numerical evaluation in large wavelength
limit provides −δφe(r = R)� δφi(r = R) for r = R while
〈δφi〉 = −〈δφe〉. It comes from the definition of 〈δφe〉:
equation (68). The small magnitude of δφe is balanced by
an integration on a larger scale from R to infinity.

– A third comment is on the dynamics of the elec-
tric charge. Firstly, equation (88) shows clearly that the
membrane potential is mainly produced by a net transfer
of charges through the membrane. A numerical evaluation
supports such a fact. Let us assume a membrane potential
about −100 mV, a radius R about 10 µm and a typical
membrane capacitance Cm = εm/d ≈ 0.01 F m−2. Then,
applying equation (88), the charge is about −100 C m−3

which corresponds to a deficit of monovalent cations about
1 µM. The typical ionic concentrations are easily about
100 mM. Then, a relative variation of only 0.001 per cent
of ionic concentration is necessary to produce a typical
membrane potential. Thus, the membrane potential in bi-
ological cells is dominated by a net transfer of charges. Sec-
ondly, the equation (88) (a macroscopic charge) seems to
be in contradiction with the equation (47, 48) (no charge
in the bulk) deduced from the BEM. It is not the case.
〈δρi〉 is the mean charge in the intracellular medium and
is linked to the microscopic charge δρi (at the membrane,
in the Debye layer) by 〈δρi〉 ≈ δρi(r = R)/χR. Thirdly,
these evaluations show that the concentration of charge
varies greatly, from zero in the bulk to 10 mM close to
the membrane. Then, the gradient of some concentrations
could be non-negligible: notably, for calcium and proton
whose concentrations are regulated to very small levels in
the bulk. We expect new interesting non linearities from
such strong gradients. Another aspect is the change in the
concentrations in the Debye layer which could modify suf-
ficiently the ionic conductivity (this effect could provide

another way for pattern formation as shown in [61]). We
recall that Agin was first, to point qualitatively, to the
lack of microscopic electroneutrality in the dynamics of
membrane potentials [52].

– An important application of the BEM could be the
correct determination of the role of diffusion in electri-
cal activities of cellular membranes. Qian and Sejnowski
have studied the generation and the conduction of ac-
tion potentials in small structures to understand synaptic
events in dendritic spines [26]. The challenge was impor-
tant because, many vertebrate and invertebrate neurons
receive synaptic inputs on spines. They show that in small
structures, ionic flux (potassium and sodium in their case)
due to diffusion could dominate the electric flux. This be-
haviour should be also true for the ionic species with very
small intracellular concentrations (as calcium and protons
for example). Moreover, the Debye layer can contribute to
non linearities due to the coupling C∇φ in the electrod-
iffusive flux. We also expect a change in the threshold of
the instability. Hydrodynamic flow is also expected due
to electro-osmosis (see the protein aggregation by electro-
osmotic instability for example [17,18]).

– A fourth comment is on the necessary assumptions to
derive the Cable equation from the BEM. We recover the
assumptions of the Cable Model: only propagation parallel
to the membrane, negligible variations of concentrations
and a characteristic wavelength larger than cellular radius
[62]. Let us note that we have implicitely assumed that
the bath is infinite (at least, of dimension larger than the
radius and the wavelength). These three assumptions are
discussed by Scott in his review [20]. To derive the Cable
equation, we have set two other assumptions.

We assume that internal and external properties (De-
bye length and coefficient of diffusion) are the same. This
assumption has no importance because external parame-
ters don’t play a role. Only internal parameters are rele-
vant due to the assumption kR� 1 (see Sect. 6.5 and the
evaluations in Sect. 7.1). The only interest is to simplify
the first steps of the derivation (however, the condition
(83) is a priori, not verified for asymmetrical media). An-
other interesting fact is the following. In Section 6.5, we
have shown using the BEM, that the dynamics is electrical
(and not diffusive) in the limit kR� 1.

We also assume that the coefficients of ionic diffusion
are the same. This condition has never been brought to
the fore to my knowledge. However, this assumption is still
ambiguous for several reasons. On the one hand, we argue
that this point is not important since each ion contributes
to the conductivity in a global way. In the Cable Model,
such an effect is taken into account by: 1/ρ = ε

∑
j Djχ

2
j

where χ2
j =

e2Naz
2
jCj0

εkBT
. On the other hand, we propose two

arguments supporting a possible (but, still speculative)
role of the difference between the diffusion coefficients.
The channels, symports, antiports and pumps are pro-
teins which transfer specifically, one species of ion. Then,
if we consider that, only one type of channel is open, the
current in the Debye layer is characterized by the conduc-
tivity of the transfered ion and not by the bulk conductiv-
ity. However, this effect might be restricted to the Debye
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layer. The second reason is due to the work of Qian and
Sejnowski who have shown that the ionic flux due to the
diffusion can be more significant than the ionic flux due
to the electric field [26]. In this case, the coefficients of
diffusion could have an importance in pattern formation
(as in Turing instability [63]). In any case, if there is an
effect of the difference between the diffusion coefficients
other than a change in the conductivity, we expect an ef-
fect appearing in very peculiar circumstances. This point
is still unclear and therefore, will be studied in a further
article [64].

8 Conclusion

The main aim of this article is to discuss how the dynamic
electric behaviour of a cellular membrane could be mod-
eled on the basis of the Nernst-Planck and Poisson equa-
tions. All the difficulty is the determination of relevant
boundary conditions. Fortunately, we knew long ago, that
the Cable Model established by analogy with an electric
cable, provides a good approximation widely validated by
experimental observations [23–25]. This is the reason we
use it to test our model.

We have tested the only model in the literature to our
knowledge based on the Nernst-Planck and Poisson equa-
tions: the Electroneutral Model. It assumes especially that
the microscopic electroneutrality is satisfied everywhere.
This model fails for physical (Sect. 5.1) and mathemati-
cal (Sect. 5.2) reasons. It doesn’t provide the same results
as the Cable Model in the instability due to a negative
differential conductance. For instance, the capacitance is
not taken into account. Moreover, the mathematical ap-
proach is not convincing as shown in Section 5.2. However,
the Electroneutral Model could provide correct results (in
a first approximation) if the flux at the membrane only de-
pends on concentrations and not on membrane potential.
We emphasize that this point has not been checked.

Then, we propose a new model (the BEM) taking into
account the dynamic variations of membrane voltage as
a function of the charge in the Debye layer. This point
would not appear if the assumption of electroneutrality
was made. A good description of the negative differential
conductance instability is obtained with the BEM. One
convincing point of our approach is the derivation of the
Cable equation, which appears as the limit of the BEM
for large wavelengths.

It is a pleasure to thank E. Dubois-Violette for a critical read-
ing of the manuscript and also, J. Prost for very useful dis-
cussions. I would like to thank E. Guyon at École Normale
Supérieure for encouragement. Special thanks to an anonymous
referee for important advice.
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